From Structure to Solutions: The Role of Basic Research in Developing Anthrax Countermeasures
نویسنده
چکیده
Dr. John Collier traced the discoveries that elucidated the structure and function of the anthrax toxin in his talk "Anthrax Toxin," which was part of the Microbiology Graduate Program Seminar Series at Yale School of Medicine on February 23, 2012. Dr. Collier, Professor of Microbiology and Immunobiology at Harvard University, began by noting the advantages to studying anthrax pathogenesis in a biosafety level-1 lab. This designation does not merely facilitate his research, but also reflects a larger trend of basic research being leveraged to develop translational applications. Basic research on toxin structure has led to the development of a vaccine by Dr. Collier's group. Next-generation prophylactics also may stem from recent discoveries uncovering a role for cellular cofactors that mediate toxin function. Finally, basic research into the toxin substructure has facilitated efforts to change the receptor tropism to target dysregulated cells for therapeutic purposes. The urgency around biodefense agents makes the choice of research priorities a salient issue. As such, this author submits that basic research occupies a unique and lucrative niche driving clinical applications.
منابع مشابه
Anthrax countermeasures: current status and future needs.
The U.S. government does not yet have the range of medical countermeasures needed to protect its citizens from anthrax and other potential bioweapons. In the event of an anthrax attack, treatment interventions in addition to antibiotics would be needed so that very ill patients can be treated and clean-up crews can be better protected, especially if an engineered strain is used. This article de...
متن کاملIn Silico Prediction of B-Cell and T-Cell Epitopes of Protective Antigen of Bacillus anthracis in Development of Vaccines Against Anthrax
Protective antigen (PA), a subunit of anthrax toxin from Bacillus anthracis, is known as a dominant component in subunit vaccines in protection against anthrax. In order to avoid the side effects of live attenuated and killed organisms, the use of linear neutralizing epitopes of PA is recommended in order to design recombinant vaccines. The present study is aimed at determining the dominant epi...
متن کاملA survey on RPL attacks and their countermeasures
RPL (Routing Protocol for Low Power and Lossy Networks) has been designed for low power networks with high packet loss. Generally, devices with low processing power and limited memory are used in this type of network. IoT (Internet of Things) is a typical example of low power lossy networks. In this technology, objects are interconnected through a network consisted of low-power circuits. Exampl...
متن کاملپیشبینی برهمکنش بین ترکیبات موجود در برهموم زنبور عسل و بخش آنتیژن حفاظتکننده موجود در سم سیاه زخم با استفاده از نرمافزارهای بیوانفورماتیک
Background: Protective antigen of anthrax toxin, after touching the cell receptors, plays an important role in the pathogenesis of toxin. The purpose of this study was to investigate the interaction of anthrax toxin protective antigen and four great combination propolis included caffeic acid, benzyl caffeate, cinnamic acid and kaempferol using the softwares and bioinformatics web servers. ...
متن کاملEvaluation of immune response to recombinant Bacillus anthracis LFD1-PA4 chimeric protein
Background: Anthrax is a particularly dangerous infectious disease that affects humans and livestock. Efficacious vaccines that can rapidly induce a long-term immune response are required to prevent anthrax infection in humans. Domains 4 and 1 of the protective antigen (PA) and lethal factor (LF), respectively, have very high antigenic properties. Aims: In this...
متن کامل